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Symmetry Transformations of General Anisotropic Temperature Factors*
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The effects of all possible erystallographic symmetry operations on general ellipsoidal atomic
temperature factors are presented in tabular form. Examples of the application of these tables are

given.

The availability of high-speed computers has made
practicable detailed analysis of anisotropic thermal
vibrations of atoms in crystals when the accuracy of
the intensity data warrants it. The importance of the
detailed study of temperature factors has been stressed
by McWeeny (1954) in his discussion of ‘bond correc-
tions’ to isolated-atom form factors, and anisotropic
vibrations have been considered in a great many recent
structure determinations. In all coding for crystallo-
graphic calculations on SWAC (Sparks, Prosen, Kruse
& Trueblood, 1956), provision has been made for
general ellipsoidal temperature factors for each sep-
arate atom in the structure, if desired. In the course
of this work, the effects of all possible crystallographic
symmetry operations on these general temperature
factors have been derived, and since these relations
should be of value to others working with anisotropic
temperature factors in various space groups, they are
presented here. The relations for the special case of
centrosymmetric monoclinic crystals have been given
previously by Rollett & Davies (1955), who also
discussed the calculation of the constants of the
vibration ellipsoid from the temperature-factor para-
meters.

The present results were derived by straightforward
application of vector analysis to determine the effect
of the symmetry operations upon the direction cosines
of the principal axes of the temperature-factor ellipsoid
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with respect to the reciprocal crystallographic axes.
The general form of the temperature factor may be
expressed as exp [—f], where

B = By hi+ Byshl+ Bygh3+ Byohyh,
+By3hyhy+Byshohy . (1)

Primed symbols, e.g. By, are used below to represent
the corresponding terms after application of a sym-
metry operation. Although in practical application of
(1) an additional subscript is needed to designate the
particular atom in the asymmetric unit to which
reference is made, this subscript is not needed in the
present discussion and has therefore been omitted.

Translations and inversions are without effect upon
the general form of the temperature factor because
they do not alter the orientation of the vibration
ellipsoid (which is itself centrosymmetric). Conse-
quently, mirror planes and glide planes produce
precisely the same effect as would a twofold axis
normal to them, and thus need not be explicitly con-
sidered. Similarly, inversion axes of order higher than
two, and all screw axes, have just the same effect as
the corresponding simple rotation axes. Thus in the
accompanying tabular presentations of the needed
relationships the only operations explicitly listed are
rotation axes of order 2, 3, 4 and 6.

Table 1 presents the results for crystals belonging
to the monoclinic system and the various systems with
orthogonal axes. Table 2 summarizes the results for
crystals indexed in the hexagonal system; not all of
these results are independent of one another, but in

Table 1. Temperature-factor transformations for monoclinic, orthorhombic, tetragonal and cubic systems

Order of axis  Axis parallel to By, By,
2 a, By, By,
2 a, By, By,
2 a3 By, By,
2 a,-+a, By, By,
2 a,+ag By, By
2 a5+3a, By, By,
3 a,+a,+ay By By,
4 a, By, By
4 a, By B,
4 a, By, By,

AC9

By, Bi, - Bhs By
Baa _B12 —Bls +st
33 —By, + By, —By,
Baa +B12 "Bls —st
Bss +Bl2 _st '_'B13
Bzz 213 —BIZ +Bza
By, — By, + B3 —By,
By, +By; + By + By,
By, —By, + B, — By,
By +Bgs —Bys —By,
Baa _BIZ —Pes +B13

24



360 SYMMETRY TRANSFORMATIONS OF ANISOTROPIC TEMPERATURE FACTORS
Table 2. Temperature-factor transformations for the hexagonal system
Order Axis
of axis  parallel to By, By, By B, By, By,
2 a, By + By —By, By, By 2By, — By By3—Bys +Bog
2 a, 11 By +By;—Bye By, 2By, — By, + By By3—Byg
2 a,+a, Bae 1 33 12 — By —Byg
2 2a,+a, By B+ Byy—Byy By 2By, — By, —Bys Byy—Byg
2 2a,+a, B+ By — By 22 By 2By, —By, Byg—By —Dgg
6 a, By +Bp—By By, By 2By, — By, Bys—By; + By
Table 3. Temperature-factor transformations for the trigonal system*
Order of axis: 3 2 2
Axis parallel to: (a,+a,+a,) (a,—a,) (a,+a,—2a,)
31'1 = Bag By, "'9‘(4-311+Bzz+4333‘2312+4B13—2st)
Béz = By By, %(Bu"‘4B22+4Bas_2312_2313+4323)
By, = By, By, %(w11+4Bzz+Baa+4Blz'—2Bls*2st)
By, = +Bys + By, $(—4By;—4By,+8Bgs+ 5B+ 2B13+2By;)
Bl’3 = +st +st %(8311_4322“‘4333‘*’2Blz+2B13+5B23)
Bé3 - +Bl2 +B13 %'(_—4B11+8B22—4B33+2B12+5B13+2B23)

* With rhombohedral indexing.

practical application each of the relations is useful.
Table 3, in which the arrangement is somewhat
different because of the complexity of some of the
expressions, gives the relations for rhombohedral
indexing of trigonal crystals.

Only the result of the first application of each sym-
metry operation is given here. For operations of order
higher than two, the expressions for positions related
by several successive operations may be derived
readily by applying the indicated relations an ap-
propriate number of times. The following examples
are illustrative; in each, we seek an expression for
the temperature-factor exponent of an atom related
by some symmetry operation, or combination of
operations, to a standard atom at (z, ¥, 2) and we wish
this expression in terms of the coefficients for the
standard atom as given in (I).

Ezample I —Space group P6ymc, position (¥, x—y,z).
This position is related to the standard position by
two successive applications of the 65-operation. Thus
from Table 2 we use -the relations for a sixfold axis
parallel to a;. After the first application, we have

By, = By, +Byy—By,, By, = 2B, —By,,
lez = Bu s Bis = 313_323 ’
By, = By = Byg;

and then application of the same relations again, this
time to the Bj;, leads to the desired relations:

33 »

Bﬁ = Bll1+lez_Bxl2 = B22 >
B2é = Bll = B11+B22_B12 ’
B:;:; = Bz;a = B33 ’

Bizf = 2B1’1_B{2 = 2B22—B12 >
B{:; = Bis“Béa = _Bza >
le:; = B1'3 = B13—Bza .

Ezample 11.—Space group P6yme, position (Z, y—z,
1+42). This position is related to (z, y, z) by the ¢ glide
normal to 2a,+a,. This glide-plane is equivalent for
our purposes to a two-fold axis parallel to 2a;,+a,,
since translations and inversions have no effect on the
vibration ellipsoid. Thus from Table 2 we find

B{1 = Bn ’ Biz = 2311—B12 »
Bzz = Bll+BZ2'_BIZ > B13 = “B13 ’
Baa = B33 s Bza = 323_313 .

Precisely these same relations may be obtained by
application of the mirror-plane (equivalent here to a
twofold axis parallel to a,) followed by the 6;-axis,
since this combination of operations also transforms
(z,y,2) to (T, y—=x, $+2).

Example I11I.—Space group P4,/mbc, position
(3~y, 3—=, 1 —2). This position is related to (z, ¥, 2)
by successive application of the c-glide and the mirror,
which are equivalent for our purposes to twofold axes
parallel to (a;+a,) and (a;) respectively. Thus from
Table 1, we obtain first

Bil = Bzz s Biz = +B12 s
lez =By, Bis = —By,
B:;:a = By, By = -Bys;

and finally
Bj; = By; = By, Bj; = +B;; = +By,,
By, = By, = By, B3 = —Bjy = +Bys,
B33 = By = By, B3 = —By3 = +By; .

As before, these same relations may be derived by
any other combination of operations, for example,
b-glide, m and 4,, which converts (x,y,z) to the
desired position.
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All of our structure-factor coding utilizes the general
form of the structure-factor expression so that no
special coding is needed for particular space groups.
Consequently, the above expressions may be used
directly, in the form of ‘code words’ (Sparks et al.,
1956) appropriate for each particular equivalent posi-
tion. This, of course, is not possible when the Lonsdale
expressions are used.

Atoms in special positions are treated in the same
manner as atoms in general positions, except that the
form factor used in the former case is (m/N)f;, where
N is the order of the space group and m is the order of
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the special position in question. This procedure avoids
the need for using different sets of equivalent positions,
and thus different code words, for atoms in positions
of different symmetry.
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The crystal structures of SrZn; and BaZng have been determined from Weissenberg and precession
camera data. The orthorhombic unit-cell dimensions are for SrZn;, a = 532, b = 6-72, ¢ = 1315 A,
Z = 4, Pmen; for BaZng, o = 532, b = 8-44, ¢ = 10-78 A, Amam. The structures are related to the

CaZng structure.

Introduction

The crystal structures of SrZn, and BaZn; were
determined as part of a program of study of the com-
pounds formed by major groups I and IT and the rare
earths (4) and minor group II (B) elements. In the
barium-zinc and strontium-zine systems, the struc-
tures of the corresponding .4Zn,;; compounds have been
determined (Zintl & Hiucke, 1937, 1938; Ketelaar,
1937). In the calcium-zinc system, in addition to the
CaZn,; compound, the structure of CaZn; has been
reported (H#ucke, 1940). Investigation of the barium
and strontium systems in this region led to the deter-
mination of two new structures which are related to the
CaZn, structure.

Experimental procedure

A bomb made of 1% in. x 6 in. steel pipe with a cap at
each end containing an alundum crucible was used as
the reaction vessel for the preparation of the A4Zng
compounds by direct combination of their elements.
An extra piece of group IIe metal was used outside
the alundum crucible to act as a ‘getter’. The bomb was
heated in a resistance furnace to 1000° C. and allowed
to cool slowly.

The crystals formed were brittle, shiny, and dulted
very slowly in a moist atmosphere. If prepared with

an excess of group Ila metal in order to prevent welding
by A4Zn,, or zinc, an abundance of crystals could be
separated by placing the reaction product on a wire
screen and flushing off the group Ila rich portion with
water. A duplicate chemical analysis made on BaZn;
by precipitating the barium as the sulfate and the zinc
as the pyrophosphate showed 28-59%, (26-6%) barium
and 6969 (69-5%) zinc, indicating BaZn;,,. X-ray
analysis alone was used to determine the composition
of SrZn,.

Single crystals were chosen and mounted in 0-3 mm.
diameter capillaries. Multiple-film Weissenberg (Cu K «)
diagrams were taken of the zero to third levels of the
[100] zone for both compounds. Precession (Mo K)
diagrams were taken for the (hk0) and (R0l) data.
The intensities of the diffraction spots were estimated
by visual comparison to a graded scale. Absorption
corrections were made for the Cu K« radiation by as-
suming a cylindrical shape of the crystals.

Determination of the structures

The cell constants of the orthorhombic crystals are
given in Table 1.

Patterson projections were made from (%£0), (%OI)
and (Okl) data. Both structures appeared to have all
atoms spaced by 0, }a or 3a in the a direction.
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