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Symmetry Transformations of General Anisotropic Temperature Factors* 
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The effects of all possible crystallographic symmetry operations on general ellipsoidal atomic 
temperature factors are presented in tabular form. Examples of the application of these tables are 
g i v e n .  

The availability of high-speed computers has made 
practicable detailed analysis of anisotropie thermal 
vibrations of atoms in crystals when the accuracy of 
the intensity data  warrants it. The importance of the 
detailed s tudy of temperature factors has been stressed 
by MeWeeny (1954) in his discussion of 'bond correc- 
tions' to isolated-atom form factors, and anisotropic 
vibrations have been considered in a great many recent 
structure determinations. In  all coding for crystallo- 
graphic calculations on SWAC (Sparks, Prosen, Kruse 
& Trueblood, 1956), provision has been made for 
general ellipsoidal temperature factors for each sep- 
arate atom in the structure, if desired. In  the course 
of this work, the effects of all possible crystallographic 
symmetry  operations on these general temperature 
factors have been derived, and since these relations 
should be of value to others working with anisotropic 
temperature factors in various space groups, they  are 
presented here. The relations for the special case of 
centrosymmetric monoclinie crystals have been given 
previously by Rollett  & Davies (1955), who also 
discussed the calculation of the constants of the 
vibration ellipsoid from the temperature-factor para- 
meters. 

The present results were derived by straightforward 
application uf vector analysis to determine the effect 
of the symmetry  operations upon the direction cosines 
of the principal axes of the temperature-factor ellipsoid 

* This w o r k  was  suppo r t ed  in p a r t  b y  the  Un i t ed  Sta tes  
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Resea rch  and  D e v e l o p m e n t  Command .  

with respect to the reciprocal crystallographic axes. 
The general form of the temperature factor may  be 
expressed as exp [-f l ] ,  where 

2 2 2 
----- B l l  h i  + B22 h2 + B33 ha + B12 hlh2 

+ Blahlha + B23h~h a . (1) 

Primed symbols, e.g. B~k , are used below to represent 
the corresponding terms after application of a sym- 
metry  operation. Although in practical application of 
(1) an additional subscript is needed to designate the 
particular atom in the asymmetric unit  to which 
reference is made, this subscript is not needed in the 
present discussion and has therefore been omitted. 

Translations and inversions are without effect upon 
the general form of the temperature factor because 
they  do not alter the orientation of the vibration 
ellipsoid (which is itself centrosymmetric). Conse- 
quently, mirror planes and glide planes produce 
precisely the same effect as would a twofold axis 
normal to them, and thus need not be explicitly con- 
sidered. Similarly, inversion axes of order higher than  
two, and all screw axes, have just the same effect as 
the corresponding simple rotation axes. Thus in the 
accompanying tabular  presentations of the needed 
relationships the only operations explicitly listed are 
rotation axes of order 2, 3, 4 and 6. 

Table 1 presents the results for crystals belonging 
to the monoclinic system and the various systems with 
orthogonal axes. Table 2 summarizes the results for 
crystals indexed in the hexagonal system; not all of 
these results are independent of one another, but  in 

Table 1. Temperature-factor transformations for monoclinic, orthorhombic, tetrarjonal and cubic systems 
Order  of axis Axis parallel  to B~I B~. 2 B~3 BI2 B~3 B~a 

2 a l  BII  B22 B33 --  B12 -- BI3 + B23 
2 a 2 B l l  B22 B33 -- B12 -~- B13 _ B23 
2 a 3 B l l  B22 B33 -~- B12 --  B:t 3 -- B2a 
2 a 1 -[- a 2 B22 B l l  B3a -~- B12 -- B23 --  B13 
2 a 2 -~- 2 3 B l l  B33 B22 --  B13 -- B12 -~- B23 
2 aa + al  B3a B92 B n  -- B,3 -f- Bla --  BI~ 
3 a 1 -~- a 2 -~- a 3 B33 BI1 B22 ~- B13 .~ B23 .-~ B12 
4 a 1 B n B33 Bg.. - -  B13 + B12 - -  Bg.a 
4 a2 B33 B29. B u + B~. 3 - -  B la  - -  Bxo " 
4 a 3 Bo.. B l l  B33 - -Blo .  - -  B2a + B13 
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Order 
of axis 

2 
2 
2 
2 
2 

6 

Table 2. Temperature-factor tra~formations for the hexagonal system 

Axis 
pa~anel to B;i B~ B~ BI2 BIs B~ 

a i Bli + B~.~.-- B12 Bu2 Bas 2B2~.-- BlZ B2a-- BIS + B2s 
a 2 Bu Bl1-{- B22 -- B12 Baa 2B11-- B i~ -~- Bia Bla-- B~a 

a i ~- a 2 B22 Bii Baa Bi~ -- B23 -- Bia 
2ai-k- a2 Bl l  B l l  -[- B2~. -- B12 Baa 2Bn-- Bi~- -- Bia B~a-- Bia 
2a~. JF ai Biid- B2~-- Bl~ B22 Baa 2B22-- B12 Bla-- B2a -- B2a 

a 3 BII -~ B22 -- BI2 Bu Baa 2B11-- BI2 Bia-- B23 -[- BI3 

Table 3. Temperature-factor transformations for the trigonal system* 

Order of axis: 3 2 
Axis parallel to : (a i + a2 + aa) (a i -  a 2) 

B~i = B33 B~.2 

B~2 = Bil Bli 
Baa = B22 B33 
B~ ---- -f-Bi~ -t- Bi~ 
B~3 = d-B23 ~-B2a 

2 

(ai-t- a 2 -  2a3) 

~(4Bii + B~.~. + 4Baa -- 2Bi~ -k- 4B13-- 2B23) 
~(Bil d- 4B~.-b 4Baa-- 2Bi2-- 2Bia + 4/323) 

(4Bil JF 4B~ + B33 + 4B12 "- 2Bla -- 2B~a) 
( -- 4Bii-- 4B2~. + 8Baa d- 5Bl~. + 2B13 d- 2Bua) 

~(8Bii-- 4B2~.-- 4Baa d- 2Bi2 d- 2B13 + 5B2a) 
~( - -  4Bil ~- 8B~-- 4Baa J~ 2Bl~ J~ 5Bla-{- 2B~a) 

* With rhombohedral indexing. 

practical  applicat ion each of the relations is useful. 
Table 3, in which the ar rangement  is somewhat  
different because of the  complexi ty  of some of the 
expressions, gives t h e  relations for rhombohedral  
indexing of t r igonal  crystals. 

Only the  result  of the first  application of each sym- 
met ry  operation is given here. For operations of order 
higher t h a n  two, the expressions for positions related 
by  several successive operations m a y  be derived 
readi ly b y  applying the  indicated relations an  ap- 
propriate number  of times. The following examples 
are i l lustrat ive;  in each, we seek an  expression for 
the temperature-factor  exponent  of an atom related 
by some symmet ry  operation, or combinat ion of 
operations, to a s tandard  a tom at (x, y, z) and we wish 
this expression in  terms of the  coefficients for the 
s tandard  atom as given in (1). 

Example / . - -Space  group P63mc, position (~, x - y ,  z). 
This position is related to the s tandard  position by  
two successive applications of the 63-operation. Thus 
from Table 2 we use t h e  relations for a sixfold axis 
parallel  to a 3. After  the first application, we have 

! 

Bii = Bii +Bg.2-Bi2, Bi2 = 2Bii-B12 , 
¢ t 

B~. 2 --- Bii , Bi3 = Bia-B2a, 
t t 

Ba3 = Bsz, = Bl3', 
and then  applicat ion of the  same relations again, this  
t ime to the Bi'k, leads to the desired relations" 

e !  ! i 

Bll  = Bil  + B22- B12 = B~.~. , 

B££ = B~I = Bla +B22-B12,  
t !  t 

B33 = B33 = B33, 
I t  t t 

Bi2 = 2 B l l - B i 2  = 2B22-B12, 

Ba3 B~3--B~3 -B23 , 

B ~  = B~3 = BI3-B=3. 

E x a m p l e / / . - - S p a c e  group P63mc, position (~, y - x ,  
½+z). This position is related to (x, y, z) b y  the  c glide 
normal  to 2 a l + a  2. This glide-plane is equivalent  for 
our purposes to a two-fold axis paral lel  to 2 a i + a  2, 
since t ranslat ions and inversions have no effect on the  
vibrat ion ellipsoid. Thus from Table 2 we f ind 

B~I = Bl l  , B ~  = 2Bla-B12 , 

B~2 = Bl l+B2~-Ba2,  B13 = -B13 , 
t e 

B33 = B33, B23 = B~z-B13 • 

Precisely these same relations m a y  be obtained by  
applicat ion of t h e  mirror-plane (equivalent here to a 
twofold axis parallel  to al) followed by  the  6a-axis, 
since this combinat ion of operations also t ransforms 
(x, y, z) to (~, y - x ,  ½+z). 

Example I / / . - - S p a c e  group P4~/mbc, position 
(½-y,  ½-x ,  ½-z). This position is related to (x, y, z) 
by  successive application of the c-glide and the  mirror, 
which are equivalent  for our purposes to twofold axes 
parallel  to (a i+a2)  and (a3) respectively. Thus from 
Table 1, we obtain first 

t 

Bll  = B~2, 
t 

B22 = B l l ,  

= B3 , 

and f inal ly 
t t  

Bll  = B~I = Bzz, 
t t  

B22 = B22 = B l l ,  

B ~  = +Bx2,  

B~3 = -B~z  , 

= - B , 3 ;  

t t  

B12 = +B12 = +B12, 
t ¢  

B13 = - B 1 3 - -  +B23 , 
t t  t 

B23 = -B23 = +B13 .  

As before, these same relations m a y  be derived by 
any  other combinat ion of operations, for example,  
b-glide, m and 42, which converts (x, y, z) to the  
desired position. 
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All of our structure-factor coding utilizes the general 
form of the structure-factor expression so that  no 
special coding is needed for particular space groups. 
Consequently, the above expressions may be used 
directly, in the form of 'code words' (Sparks et al., 
1956) appropriate for each particular equivalent posi- 
tion. This, of course, is not possible when the Lonsdale 
expressions are used. 

Atoms in special positions are treated in the same 
manner as atoms in general positions, except that  the 
form factor used in the former case is (m/N)f~, where 
N is the order of the space group and m is the order of 

the special position in question. This procedure avoids 
the need for using different sets of equivalent positions, 
and thus different code words, for atoms in positions 
of different symmetry. 
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The crystal structures of SrZn 5 and BaZn 5 have been determined from Weissenberg and precession 
camera data. The orthorhombic unit-cell dimensions are for SrZn~, a -- 5.32, b ---- 6"72, c -- 13-15/~, 
Z ~-- 4, Pinch; for BaZn 5, a ---- 5.32, b = 8.44, c = 10.78/~, Amain. The structures are related to the 
CaZn 5 structure. 

Introduction 

The crystal structures of SrZn 5 and BaZn 5 were 
determined as part  of a program of study of the com- 
pounds formed by major groups I and I I  and the rare 
earths (A) and minor group II  (B) elements. In the 
barium-zinc and strontium-zinc systems, the struc- 
tures of the corresponding AZn13 compounds have been 
determined (Zintl & H~ucke, 1937, 1938; Ketelaar, 
1937). In the calcium-zinc system, in addition to the 
CaZn13 compound, the structure of CaZn 5 has been 
reported (H~ucke, 1940). Investigation of the barium 
and strontium systems in this region led to the deter- 
mination of two new structures which are related to the 
CaZn 5 structure. 

Experimental  procedure 

A bomb made of 1½ in. × 6 in. steel pipe with a cap at 
each end containing an alundum crucible was used as 
the reaction vessel for the preparation of the AZn 5 
compounds by direct combination of their elements. 
An extra piece of group IIa  metal was used outside 
the alundum crucible to act as a 'getter'. The bomb was 
heated in a resistance furnace to I000 ° C. and allowed 
to cool slowly. 

The crystals formed were brittle, shiny, and dulled 
very slowly in a moist atmosphere. If prepared with 

an excess of group IIa  metal in order to prevent welding 
by AZn13 or zinc, an abundance of crystals could be 
separated by placing the reaction product on a wire 
screen and flushing off the group IIa  rich portion with 
water. A duplicate chemical analysis made on BaZn 5 
by precipitating the barium as the sulfate and the zinc 
as the pyrophosphate showed 28.5% (26.6 %) barium 
and 69.6% (69.5%) zinc, indicating BaZns.l~. X-ray 
analysis alone was used to determine the composition 
of SrZn 5. 

Single crystals were chosen and mounted in 0.3 mm. 
diameter capillaries. Multiple-film Weissenberg (Cu Ka) 
diagrams were taken of the zero to third levels of the 
[100] zone for both compounds. Precession (Me Ka) 
diagrams were taken for the (hk0) and (hO1) data. 
The intensities of the diffraction spots were estimated 
by visual comparison to a graded scale. Absorption 
corrections were made for the Cu K~ radiation by as- 
suming a cylindrical shape of the crystals. 

Determinat ion of the structures 

The cell constants of the orthorhombic crystals are 
given in Table 1. 

Patterson projections were made from (hkO), (hO1) 
and (Okl) data. Both structures appeared to have all 
atoms spaced by 0, ~a or ½a in the a direction. 
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